Unsupervised Quantification of Under- and Over-Segmentation for Object-Based Remote Sensing Image Analysis

Object-based image analysis (OBIA) has been widely adopted as a common paradigm to deal with very high-resolution remote sensing images. Nevertheless, OBIA methods strongly depend on the results of image segmentation. Many segmentation quality metrics have been proposed. Supervised metrics give accurate quality estimation but require a ground-truth segmentation as reference. Unsupervised metrics only make use of intrinsic image and segment properties; yet most of them strongly depend on the application and do not deal well with the variability of objects in remote sensing images.

Furthermore, the few metrics developed in a remote sensing context mainly focus on global evaluation. In this paper, we propose a novel unsupervised metric, which evaluates local quality (per segment) by analyzing segment neighborhood, thus quantifying under- and over-segmentation given a certain homogeneity criterion. Additionally, we propose two variants of this metric, for estimating global quality of remote sensing image segmentation by the aggregation of local quality scores. Finally, we analyze the behavior of the proposed metrics and validate their applicability for finding segmentation results having good tradeoff between both kinds of errors.

Share This Post