DPSK signals demodulation based on a multimode fiber with a central dip

Differential Phase Shift Keying (DPSK) modulation format has been shown as a robust solution for next-generation optical transmission systems. One key device enabling such systems is a delay interferometer, converting the phase modulation signal into the intensity modulation signal to be detected by the photodiodes. Usually, a standard Mach-Zehnder interferometer (MZI) is used for demodulating a DPSK signal. In this paper, we develop an MZI which is based on all-fiber Multimode Interference (MI) structure: a multimode fiber (MMF) with a central dip, located between two single-mode fibers (SMFs) without any transition zones. The MI based MZI (MI-MZI) is more stable than the standard MZI as the two arms share the same MMF, reducing the impact of the external effects, such as temperature and others.

Performance of this MI-MZI is analyzed theoretically and experimentally from transmission spectrum. Experimental results shows that high interference extinction ratio is obtained, which is far higher than that obtained from a normal graded-index based MI-MZI. Finally, by software simulation, we demonstrate that our proposed MI-MZI can be used for demodulating a 40 Gbps DPSK signal. The performance of the MI-MZI based DPSK receiver is analyzed from the sensitivity. Simulation results show that sensitivity of the proposed receiver is about -22.3 dBm for a BER of 10-15 and about -23.8 dBm for a BER of 10-9.

Share This Post