In most parts of the retina, neuronal circuits process visual signals represented by slowly changing membrane potentials, or so-called graded potentials. A feasible approach to speculate about the functional roles of retinal neuronal circuits is to reproduce the graded potentials of retinal neurons in response to natural scenes. In this study, we developed a simulation platform for reproducing graded potentials with the following features: real-time reproduction of retinal neural activities in response to natural scenes, a configurable model structure, and compact hardware.
The spatio-temporal properties of neurons were emulated efficiently by a mixed analog-digital architecture that consisted of analog resistive networks and a field-programmable gate array. The neural activities on sustained and transient pathways were emulated from 128 × 128 inputs at 200 frames per second.