In the year 1948, Barlow and Morgenstern published the book “A Dictionary of Musical Themes”, which contains 9803 important musical themes from the Western classical music literature. In this paper, we deal with the problem of automatically matching these themes to other digitally available sources. To this end, we introduce a processing pipeline that automatically extracts from the scanned pages of the printed book textual metadata using Optical Character Recognition (OCR) as well as symbolic note information using Optical Music Recognition (OMR).
Due to the poor printing quality of the book, theOCR and OMR results are quite noisy containing numerous extraction errors. As one main contribution, we adjust alignment techniques for matching musical themes based on the OCR and OMR input. In particular, we show how the matching quality can be substantially improved by fusing the OCR- and OMR-based matching results. Finally, we report on our experiments within the challenging Barlow and Morgenstern scenario, which also indicates the potential of our techniques when considering other sources of musical themes such as digital music archives and the world wide web.