Durability of concrete structures depends mainly on the ease whereby water and any aggressive chemical agents dissolved therein can penetrate. Therefore, measuring water penetrability in concrete structures is crucial mostly when structures are in service. In this context, nondestructive techniques play an important role. In particular, the electromagnetic waves emitted by ground-penetrating radar (GPR) are very sensitive to the water content of the medium through which they propagate. This fact provides an interesting opportunity to analyze if the GPR technique allows the assessment of water penetrability in concrete with enough accuracy. In line with this, this paper describes the laboratory experiments and relevant analysis carried out to study the capability of GPR to assess water penetrability in hardened concrete.
For this purpose, concrete specimens were fabricated and dried in an oven after 90 days of curing. They were then dipped into water and GPR measurements were taken at different intervals, based on coupling a 2.0 GHz antenna. The results showed that the agreement between velocity increments and the waterfront advance was excellent. In addition, a specific processing of the data acquired was developed. This process included the isolation of the reflection due to the waterfront, produced just before the reflection of the bottom of the samples. As a result of this processing, the in-depth waterfront location at different times was determined with high reliability.