Rectangular electrical pulses are the primary stimulus waveform used in retinal prosthetics as well as many other neural stimulation applications. Unfortunately, the utility of pulsatile stimuli is limited by the inability to avoid the activation of passing axons which can result in the distortion of the spatial patterns of elicited neural activity. Because avoiding axons would likely improve clinical outcomes, the examination of alternate stimulus waveforms is warranted. Here, we studied the response of rabbit retinal ganglion cells (RGCs) to sinusoidal electrical stimulation applied at frequencies of 5, 10, 25, and 100 Hz. Targeted RGCs were restricted to 4 common types: OFFBrisk Transient, OFF-Sustained, ON-Brisk Transient, and ONSustained.
Interestingly, response patterns varied between different types; the most notable difference was the relatively weak response of ON-Sustained cells to low frequencies. Calculation of total spike counts per trial revealed that lower frequencies are more charge efficient than high frequencies. Finally, experiments utilizing synaptic blockers revealed that 5 and 10 Hz activate photoreceptors while 25 and 100 Hz activate RGCs. Taken together, our results suggest that while sinusoidal electrical stimulation may provide a useful research tool, its clinical utility may be limited.